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Error Correction

i Cell phone Hard disk Optical disk Fiber
Scheme:
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Example of Additive White Gaussian Channel:

P(xout|xin) = [T PCxout;i|Xinii)

i=bits

< o o . Plxly) ~ exp(=s*(x = y)?/2)
N
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@ Channel
is noisy "black box" with only statistical information available

@ Encoding:
use redundancy to redistribute damaging effect of the noise

@ Decoding:
reconstruct most probable codeword by noisy (polluted) channel
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Low Density Parity Check Codes

@ N bits, M checks, L = N — M information bits
example: N =10,M =5,L =5

@ 2L codewords of 2V possible patterns
@ Parity check: Av=c=0

example:
1 1 1 1 0 1 1 0 0 0
0 0 1 1 1 1 1 1 0 0
A=] o 1 0 1 0 1 0 1 1 1
1 0 1 0 1 0 0 1 1 1
1 1 0 0 1 0 1 0 1 1
@ LDPC = graph (parity check matrix) is sparse

Tanner’s (155.64.20) code
‘ Hamming distance
informational bits
ength of encoded message
Parity check matri

O Ta D Sttt T F . f e g Sy o 2812 x 10"
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atistical Inference

Oorig = X = o
original corrupted bl
ossible
data noisy channel data: statistical ? .
, L . reimage
Oorig eC P(X‘O’) log-likelihood inference P e f,
o cl
codeword magnetic field
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atistical Inference

= X = o

corrupted .
. o possible

noisy channel data: statistical .
reimage
P(X‘O’) log-likelihood inference 2 - f,
o c(C
magnetic field
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atistical Inference

= X = o
corrupted .
. L. possible
noisy channel data: statistical .
reimage
P(x|o) log-likelihood inference po_ = g,
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= X = o
corrupted .
. .. possible
noisy channel data: statistical .
reimage
P(X‘O’) log-likelihood inference po_ c g
magnetic field

o= (o1, ,0n), N finite, o;==+1 (example)

Maximum Likelihood symbol Maximum-a-Posteriori
ML = arg max P(x|o) MAP; = arg max Z P(x|o)
7 7 o\o;

Exhaustive search is generally expensive: complexity ~ 2N

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Graphical models of Statistical Inference

Factorization (Forney '01, Loeliger '01)

fa>0

P(olx) = Z7 ] fa(xalea)
a
Oap — Opy — +1

2 = 3" I flxslos))

partition function

o1 = (012,014, 018)

o2 = (012,013)

Example: Error-Correction  (linear code, bipartite Tanner graph)

1, Va,B831i, 0Cjq =0j
fi(hilo;) = exP(cr,-hi)'{ 0, 7 otherwise "

fa(ga) =6 | [[ o1 +1

i€a

h; - log-likelihoods
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Variational Method in Statistical Mechanics

fa(oa
P(o) = 115 - 7 = ST ()

Exact Variational Principe Kullback-Leibler '51

Fblo)} = = X b{o) S f(o) — 3 blo) In b(o)

52(’;) =0 under za: b(o) =1

’b(,,):p(a)
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Variational Method in Statistical Mechanics
P(o) = 1=z = 5211, (o)

Exact Variational Principe Kullback-Leibler '51
F{b(a)} = - b(a)> fi(a.) — > b(a)Inb(o)

=0 under » b(o)=

o)

’ b(o)=p(c)

Variational Ansatz

® Mean-Field: p(o) ~ b(a) = [] bi(7)

@ Belief Propagation:
[1, ba(oa)
p(o) ~ (o) = 4122 _
H(a,b) bab(O'ab)

ba(o,) = Z b(o), bap(cap) Z b(o

o\o, o\oap

(exact on a tree)

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics



Introduction Main Example: Error Correction
Statistical Inference
Graphical Models
Bethe Free Energy and Belief Propagation (BP)

Bethe free energy iational approach
(Yedidia,Freeman,Weiss inspired by Bethe '35, Peierls
F==>"> ba(oa)Infa(ca)+ > > ba(0a)Inba(03) = Y bac(0ac) In bac(0ac)
a o, a o, (a,c)
self-energy configurational entropy
Vaic€a: >, ba(0a) =1, bac(oa)= Zaa\aac ba(oa)
=-Belief-Propagation Equations: % oy, = 0

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Bethe free energy: iational approach
(Yedidia,Freeman,Weiss '01 - inspired by Bethe '35, Peierls '36)

F=-— Z Z ba(o2) In fa(os) +Z Z ba(o2) In ba(os) — Z bac(aac) In bac(ac)

a (a;¢)

self-energy configurational entropy
Va c€a: . ba(0a) =1, bac(0ac) =3, \o, ba(0a)

=0

constr.

: ; nee OF
=Belief-Propagation Equations: 5

MAP~BP=Belief-Propagation (Bethe-Pieirls): iterative = Gallager '61; MacKay '98

@ Exact on a tree
@ Trading optimality for reduction in complexity: ~ 2L —~ L

@ BP = solving equations on the graph:

JEB i€p
Naj = hj + > tanh=! [ T] tanh ngi < LDPC representation
B#a iZ#j

@ Message Passing = iterative BP

@ Convergence of MP to minimum of Bethe Free energy can be enforced

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statisti
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Linear Programming version of Belief Propagation

In the limit of large SNR, In f;, — +oc: BP—LP
Minimize F ~ E = —)_ > by(o,) Infy(o,) = self energy
a o,

under set of linear constraints
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Linear Programming version of Belief Propagation

In the limit of large SNR, In f;, — +oc: BP—LP
Minimize F ~ E = —)_ > by(o,) Infy(o,) = self energy
a o,

under set of linear constraints

LP decoding of LDPC codes Feldman, Wainwright, Karger '03

@ ML can be restated as an LP over a codeword polytope

@ LP decoding is a “local codewords” relaxation of LP-ML
@ Codeword convergence certificate

@ Discrete and Nice for Analysis

@ Large polytope {b,, bj} = Small polytope {b;}

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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@ Gauge Transformations and BP
@ Loop Series in terms of BP
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BP does not account for Loops
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BP does not account for Loops

o

@ Is BP just a heuristic in a loopy case?

e Why does it (often) work so well?

@ Does exact inference allow an expression in terms of BP?
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e, e y
Questions:

@ Is BP just a heuristic in a loopy case?

e Why does it (often) work so well?

@ Does exact inference allow an expression in terms of BP?

@ Can one correct BP systematically?

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Loop Series in terms of BP

BP does not account for Loops

o

@ Is BP just a heuristic in a loopy case?

e Why does it (often) work so well?

@ Does exact inference allow an expression in terms of BP?

@ Can one correct BP systematically?

Previous Considerations:

@ Rizzo, Montanari '05 - Corrections to BP approximation

@ Parisi, Slanina '05 - BP as a saddle-point + corrections

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Chertkov,Chernyak '06

fa(o'a = (O'aby cee )) % Zg;b Gap (O'aby U;b) fa(a';bv o )

= ! Zo’ab Gab(a—abu U/)Gba(aab> OJl) == 6(0'/7 UII)
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Chertkov,Chernyak '06

fa(o'a = (O'aby ce )) — Zg;b Gap (O'aby U;b) fa(O';b, o )

- i >0, Gab(0ab, 0") Gpa(Tap, 0'') = 6(0”, 0")
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Chertkov,Chernyak '06

fa(o'a = (Uab»' )) e Zg;b Gap (Uab70';b) fa(O';b,- . )

Zgab Gab(o'abv U/)Gba(o'abv 0'”) = 6(0J7 0'”)
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Chertkov,Chernyak '06

Local Gauge, G, Transformations

" e o0 = (00, ++)) = S, ot (025, 7Lp) ()

Zgab Gab(o'abv 0'/) Gba(aabv 0'”) = 6(0Jv 0'”)

Gea €

[ Xe}

Gy Gpg Gos G i\Gid
ef

The partition function is invariant under any G-gauge!

Z = Z H f2(0s) = Z H(Z fa(a';) H Gab(Tabs G;b))

bca

graphical trace

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statisti
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Gauge Transformation: Binary Representation

Z=3,11,f(0s) = © o 11, fo(0a) [Tpe 2572, obe # 0t
The binary trick

1+ 7o = 2elontm) (1 + (tanh(n + x) — o)(tanh(n + x) — m) cosh?(n + x))

cosh(71+x)

?a(a'a) = ﬂ,(o’a) Hbga eXp(nabaab)
Vbc (chv Ucb) =1+ (tanh(nbc aF ncb) - ch) (tanh(nbc aF ncb) - Ucb) COShz("]bc + ncb)

Graph Coloring

Z= (H 2 cosh(npe + ncb))ilz H fa(oa) - H Vbe
be o! a bc

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Gauge Transformation: Binary Representation

Z=3,11,f(0s) = X o I1. fal@a) TTpe 257, 0pe # 0

The binary trick

1+ mo = 2elontm) (1 + (tanh(n + x) — o)(tanh(n + x) — ) cosh?(n + X))

cosh(n+x)

?a(o'a) = f:?(a'a) Hbea eXp(nabUab)
Ve (Fbe; 0eb) = 1+ (tanh(npe + Neb) — dbe) (tanh(npe + 1ep) — oep) C05h2(7]bc + Neb)

Graph Coloring

Z= (H 2c°5h(nbc + T]cb))_lz H ?3(0'3) : H Ve
bc o/ a bc
N——
1+ T s

colored edges

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Gauge Transformation: Binary Representation
Z =3, 1, f(02) = o T1, f(0a) TTpe %2, b # 0t

The binary trick

14 7o = Z2ELRY (1 4 (tanh(n + x) — o) (tanh(y + x) — ) cosh?(n + X))

?a(ﬂ'a) = fa(O'a) Hbg; eXp(nabgab)
Ve (Fbes 0cb) = 1+ (tanh(npe + Neb) — dbe) (tanh(npe + Nep) — ocp) C°5h2(77bc + Neb)

Ipmmﬁm)znam IT Vs

bc bc

1+ > 30005000000
colored edges

Z=  Zy(m) +
N——

e G all possible colorings of the graph

excited states

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Gauges and BP

Partition function in the colored representation

Z = ([] 2cosh(mpe + 1) ™S [T & I Voer Fa(oaina) = fa(oa) [ exp(napoap)
o/ a bc

bc b€a

2
Ve (0be, 0cb) = 1+ (tanh(npe + Mep) — be) (tanh(Mpe + neb) — o) cosh™ (npe + Mep)

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and St:
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Gauges and BP

Partition function in the colored representation

Z = ([] 2cosh(mpe + 1) ™S [T & I Voer Fa(oaina) = fa(oa) [ exp(napoap)

bc o! a bc bea

2
Ve (0be, 0cb) = 1+ (tanh(npe + Mep) — be) (tanh(Mpe + neb) — o) cosh™ (npe + Mep)

Fixing the gauges = BP equations!!

JjEB i€ep
Zaa (tanh(nggp) + nf’ip)) — Uab) fa(caima) =0 = bp =h; + Z tanh ™ 1 H tanhn
BFa i#
LDPC case

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics



Loop Calculus Gauge Transformations and BP
Loop Series in terms of BP

Gauges and BP

Partition function in the colored representation

Z = ([] 2cosh(mpe + 1) ™S [T & I Voer Fa(oaina) = fa(oa) [ exp(napoap)
o/ a bc

bc b€a

2
Ve (0be, 0cb) = 1+ (tanh(npe + Mep) — be) (tanh(Mpe + neb) — o) cosh™ (npe + Mep)

Fixing the gauges = BP equations!!

jEB i€ep
b, b % —
Zaa (tanh(ngbp) + nf’ap)) — Uab) fa(caima) =0 = nzz. = h; + Z tanh 1(1_[ tanh ngp/)
BFo i#
LDPC case

Color Principe: no loose ends

IT Vee =1+ > ek e ke
(bc)

colored edges

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Gauges and BP
Partition function in the colored representation

Z = (I] 2cosh(mpe + 1e6) ™S L B I Voer Faloaina) = fa(oa) [ exp(nap025)

bc a bc bea

2
Ve (Gbes ocp) = 1+ (tanh(npe + nep) — obc) (tanh(Mpe + nep) — o) cosh® (npe + Mep)

Fixing the gauges = BP equations!!

JEB i€
b b z b — b,
Zo,a (tanh(nibp) + ngap)) — Uab) fa(eaina) =0 = na'j. = h; + Z tanh 1(H tanh nﬁ’:})
BFa i#

LDPC case

Color Principe: no loose ends

IT Ve =1+ > 00081000 000
bc) colored edges

(

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Gauges and BP

Partition function in the colored representation

Z = ([] 2cosh(mpe + 1) ™S [T &1 Voer  Fa(oaina) = fa(oa) [ exp(napoas)
bec o! a be

b€a

2
Vbe (0be, 0cb) = 1+ (tanh(npe + Mep) — be) (tanh(Mpe + nep) — o) cosh™ (npe + Mep)

Fixing the gauges = BP equations!!

JEB i€p
b, b 7 b, - b,
PI (tanh(ngbp) 4 nfjap)) = Uab) fa(caimna) =0 = ’705' = h; + Z tanh 1(1__[ tanh nﬁ’;)
BFa i#
LDPC case

Color Principe: no loose ends

IT Vbe =1+ > 1000810004 000
(bc) colored edges

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Gauges and BP

Partition function in the colored representation

Z = ([] 2cosh(mpe + 1) ™S [T &1 Voer  Fa(oaina) = fa(oa) [ exp(napoas)
bec o! a be

b€a

2
Vbe (0be, 0cb) = 1+ (tanh(npe + Mep) — be) (tanh(Mpe + nep) — o) cosh™ (npe + Mep)

Fixing the gauges = BP equations!!

JEB i€p
b, b 7 b, - b,
PI (tanh(ngbp) 4 nfjap)) = Uab) fa(caimna) =0 = ’705' = h; + Z tanh 1(1__[ tanh nﬁ’;)
BFa i#
LDPC case

Color Principe: no loose ends

Variational Principe:

IT Vbe =1+ > 1000810004 000
by lored ed
(bc) colored edges H Vbcﬂlv 7= 2, 52y 0

@ > - oo
= 2 = ([T 2e08h (e + 1) 1, fles)

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Loop Series: Chertkov,Chernyak '06

Exact (!!) expression in terms of BP

z=> " fe) =2 <1+Zr(C)>
o, a C

HC Ha
€ -
Q)= _T[&
[1 1-m2)
(ab)eC b’ aeC
@ The Loop Series is finite
C € Generalized Loops = Loops without loose ends I I - A—

.

calculated within BP

@ BP is exact on a tree

_ (bp)
Mab = / dosba™(s)oan @ BP is a Gauge fixing condition.

> (bp) Other choices of Gauges would
Ha = / doasb; " (0a) H (0ab — Map) lead to different representation.
bea,C

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Features of the Loop Calculus

Z=2o(1+> crc) rc HaEC,&a

@ Bethe Free Energy is related to the “ground state” term in the partition

function: F(b*(n)) = —In Zy(n), where
- _ fa(oa) exp(X pea NabTab) _ exp((Mab+7ba)T ab)
b (aa) ~ T fa('-"a)eXP(bfbea NabTab)’ b:b(oab) = 2cosh€nabi’7:a)b
(*]
o
*]
o
(*]

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statisti
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Features of the Loop Calculus

4 ZO(]-“‘ZC rc

@ Bethe Free Energy is related to the “ground state” term in the partition

function: F(b*(n)) = —In Zy(n), where
fa(oa) exp(3 pea MabTab) ;
bi(92) = 5, Hen e s, moow)?  ab(Oab) =

@ Extrema of F(b) are in one-to-one correspondence with extrema of Zy(n).

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Features of the Loop Calculus

V4 ZO(]-“‘ZC rc), rc HaeCﬁa

@ Bethe Free Energy is related to the “ground state” term in the partition

function: F(b*(n)) = —In Zy(n), where
fa(oa) exp(3 pea MabTab) ;
bi(0a) = 5 e en( seg navem)®  Lab(Tab) =

@ Extrema of F(b) are in one-to-one correspondence with extrema of Zy(n).

@ Loop series can be built around any extremum (minimum, maximum or
saddle-point) of the Bethe Free energy.
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Features of the Loop Calculus

Z ZOU-“‘ZC”C » I'c HaeC,aa

@ Bethe Free Energy is related to the “ground state” term in the partition

function: F(b*(n)) = —In Zy(n), where
fa(oa) exp(3 pea MabTab) :
bi(0a) = 5 Ao en( pe, nav)  an(Tab)

@ Extrema of F(b) are in one-to-one correspondence with extrema of Zy(n).

@ Loop series can be built around any extremum (minimum, maximum or
saddle-point) of the Bethe Free energy.

@ —1<rc,jia < 1. The tasks of finding all fi, (over the graph) and r¢ for a given
loop are (computationally) not difficult. All that suggests simple heuristic for
finding loops with large rc.

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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Features of the Loop Calculus

Z ZOU-“‘ZC”C » I'c HaeC,aa

@ Bethe Free Energy is related to the “ground state” term in the partition

function: F(b*(n)) = —In Zy(n), where
. fa(0a) exp(X- pe s MabTab) * _exp((map+mp
bi(oa) = Lo, faloa) P pey Maboab)’ B2s(Tab) = S ecsn(y ab

@ Extrema of F(b) are in one-to-one correspondence with extrema of Zy(n).

@ Loop series can be built around any extremum (minimum, maximum or
saddle-point) of the Bethe Free energy.

@ —1 < rc,jia < 1. The tasks of finding all i, (over the graph) and r¢ for a given
loop are (computationally) not difficult. All that suggests simple heuristic for
finding loops with large rc.

@ Linear Programming limit of the Loop Calculus is well defined.
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Features of the Loop Calculus

Z= ZO(1+ZC rC)v rc = HaeC,aa

@ Bethe Free Energy is related to the “ground state” term in the partition

function: F(b*(n)) = —In Zy(n), where
fa(@a) exp(3- pea MabTab) * exp((Nab+Mba)Tab
b3(oa) = < bY (0ap) = %

o fa(02) &P pea MabTab)’ b
@ Extrema of F(b) are in one-to-one correspondence with extrema of Zy(n).

@ Loop series can be built around any extremum (minimum, maximum or
saddle-point) of the Bethe Free energy.

@ —1 < rc,jia < 1. The tasks of finding all i, (over the graph) and r¢ for a given
loop are (computationally) not difficult. All that suggests simple heuristic for
finding loops with large rc.

@ Linear Programming limit of the Loop Calculus is well defined.

@ Any marginal probability, e.g. magnetization (a-posteriori log-likelihood) at an
edge, is expressed as modified Loop Series.

Michael Chertkov, Los Alamos Loop Calculus in Information Theory and Statistical Physics
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© Applications
@ Analysis and Improvement of LDPC-BP/LP Decoding
@ Long Correlations and Loops in Statistical Mechanics
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Analysis and Improvement of LDPC-BP/LP Decoding
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If BP/LP fails while ML/MAP would not
. one needs to account for Loops

e 6 6 o6 o
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Analysis and Improvement of LDPC-BP/LP Decoding
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If BP/LP fails while ML/MAP would not
. one needs to account for Loops

How many loops are critical to recover from the failure?

*]
(*]
o
o
(*]
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Analysis and Improvement of LDPC-BP/LP Decoding
Applications Long Correlations and Loops in Statistical Mechanics

If BP/LP fails while ML/MAP would not
. one needs to account for Loops

@ How many loops are critical to recover from the failure?
o Will accounting for a single most important loop be sufficient?
°
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Analysis and Improvement of LDPC-BP/LP Decoding
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If BP/LP fails while ML/MAP would not
. one needs to account for Loops

How many loops are critical to recover from the failure?
Will accounting for a single most important loop be sufficient?
How long is the critical loop?

Will it be difficult to find the critical loop?
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If there are many ... how are the critical loops distributed over
scales?
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Error-Floor

@ BER vs SNR = measure of
performance

o Waterfall < Error-floor

@ ML and BP/LP are generally
different at s2 = £5/Ny — oo,
FERML ~ exp(—dp 5%/2) vs
FERg,, ~ exp(—dg,,5%/2) where

dML = 9sub
: 3 @ Monte-Carlo is useless at
dr——orTwr or oo o oo O FER < 10-8
T. Richardson, Allerton '03 @ Need an efficient method to
analyze error-floor
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Applications

Pseudo-codewords and Instantons

Error-floor is caused by Pseudo-codewords: I

Wiberg '96; Forney et.al'99; Frey et.al '01; closest to zero rrors
Richardson '03; Vontobel, Koetter '04-'06 . Hpie
Instanton = optimal conf of the noise \
no erfors
BER = /d(noise) WEIGHT (noise) .

inal ot

BER ~ WEIGHT .
of the noise

Instanton-amoeba

optimal conf _ Point at the ES — optimization algorithm
of the noise ~  closest to " 0" Stepanov, et.al '04,'05
’ Stepanov, Chertkov '06

Instantons are decoded to Pseudo-Codewords

Loop Calculus in Information Theory and Statistical Physics
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Applications

Loop Calculus & Pseudo-Codeword Analysis

Z =

Single loop truncation

Zo(1+ 3 cre) = Zo(1+ r(T))

Instanton #1, d_,=16.4037

ical Mechanics
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Synthesis of Pseudo-Codeword Search Algorithm

(Chertkov, Stepanov '06) &

@ Consider pseudo-codewords one after other

@ For an individual pseudo-codeword /instanton identify a critical
loop, I, giving major contribution to the loop series.

@ @ ®

. . F— u -1
@ Hint: look for single connected loops and use local " triad 0

contributions as a tester: r(r):]_[aer /lsfp)

50 100
bit label, i=1,...155

v

Proof-of-Concept test (155, 64, 20) code over AWGN]

@ V pseudo-codewords with 16.4037 < d < 20 (~ 200 found)
there always exists a simple single-connected critical loop(s)
with r([) ~ 1.

@ Pseudo-codewords with the lowest d show r(I') = 1

@ Invariant with respect to other choices of the original codeword
o
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Extended Variational Principe & Loop-Corrected BP

Bare BP Variational Principe:

57y
Snap

(59) =0, Zy = (I pe 2 cosh(npe + 7ch))71 > o 15 Paloa) n(bP)
n P
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Extended Variational Principe & Loop-Corrected BP

Bare BP Variational Principe:

52y

e =0, Zy= (I pc 2c0h(bc + 7cb)) "' E 5 I, Palera)

2 (9) n(bp)

New choice of Gauges guided by the knowledge of the critical loop '

See=F)|  —o F=—In(Z+ Zr)
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Extended Variational Principe & Loop-Corrected BP

Bare BP Variational Principe:

57y
Snap

=0, 2y = (I1 pe 2c0sh(npe + 1ep)) ™ ¥ o 11, Paloa)
n(bP)

New choice of Gauges guided by the knowledge of the critical loop '

S exp(—F) _ —
Seel=7) (Mﬁo, F=—In(Z+Z)

n(bp)

V.

BP-equations are modified along the critical loop I

Eo-a (tanh(n2p+1pa) — o ap)Paloa)
Zaa Pa(oa)

Haer #ar

Sma, b1 #0 [along ]

nete H(arphyer@=(mG),)2)

Neff
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Extended Variational Principe & Loop-Corrected BP

Bare BP Variational Principe:

57y
Snap

=0, 2y = (I1 pe 2c0sh(npe + 1ep)) ™ ¥ o 11, Paloa)
n(bP)

New choice of Gauges guided by the knowledge of the critical loop '

S exp(—F) _ —
Seel=7) (Mﬁo, F=—In(Z+Z)

n(bp)

V.

BP-equations are modified along the critical loop I

Eo-a (tanh(n2p+1pa) — o ap)Paloa)
Zaa Pa(oa)

Haer #ar

Sma, b1 #0 [along ]

Neff H(a'b')er(lf('"itb/ )2) _—

Loop-Corrected BP Algorithm

1. Run bare BP algorithm. Terminate if BP succeeds (i.e. a valid code word is found).

A

2. If BP fails find the most relevant loop I that corresponds to the maximal |r-|. Triad search is helping.

3. Solve the modified-BP equations for the given I'. Terminate if the improved-BP succeeds.

4. Return to Step 2 with an improved I-loop selection.

\
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[.P-erasure = simple heuristics

@ 1. Run LP algorithm. Terminate if LP succeeds (i.e. a valid code word is found).
@ 2. If LP fails, find the most relevant loop I that corresponds to the maximal amplitude r(T).

@ 3. Modify the log-likelihoods along the loop I introducing a shift towards zero, i.e. introduce a complete
or partial erasure of the log-likelihoods at the bits. Run LP with modified log-likelihoods. Terminate if the
modified LP succeeds.

@ 4. Return to Step 2 with an improved selection principle for the critical loop.
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(155, 64, Test

o IT WORKS!
All troublemakers (~ 200 of them) previously found by LP-based Pseudo-Codeword-Search Algorithm
method were successfully corrected by the LP-erasure algorithm.

@ Method is invariant with respect the choice of the codeword (used to generate pseudo-codewords).
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[.P-erasure = simple heuristics

@ 1. Run LP algorithm. Terminate if LP succeeds (i.e. a valid code word is found).
@ 2. If LP fails, find the most relevant loop I that corresponds to the maximal amplitude r(T).

@ 3. Modify the log-likelihoods along the loop I introducing a shift towards zero, i.e. introduce a complete
or partial erasure of the log-likelihoods at the bits. Run LP with modified log-likelihoods. Terminate if the
modified LP succeeds.

@ 4. Return to Step 2 with an improved selection principle for the critical loop.

N

(155, 64, 20) Test

o IT WORKS!

All troublemakers (~ 200 of them) previously found by LP-based Pseudo-Codeword-Search Algorithm
method were successfully corrected by the LP-erasure algorithm.

@ Method is invariant with respect the choice of the codeword (used to generate pseudo-codewords).

General Conjecture:

@ Loop-erasure algorithm is capable of reducing the error-floor

@ Bottleneck is in finding the critical loop
o
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Dilute Gas of Loops: Z = Zo(1+ > crc)=2Zo- [I (14 rs)

Csc:single connected

Applies to
@ Lattice problems in high spatial dimensions

@ Large Erdos-Renyi problems (random graphs with controlled connectivity degree)

@ The approximation allows an easy multi-scale re-summation

@ In the para-magnetic phase and h = 0: the only solution of BP is a trivial one
1 =0, Zy — 1, and the Loop Series is reduced to the high-temperature
expansion [Domb, Fisher, et al '58-'90]

Loop Series trivially pass the common

Ising model in the factor graph terms "loop” tests (from Rizzo, Montanari '05)

Z=% Il exp(Jjoioj) =% I faoa)

o a=(i,j)EX o ae{iYU{a} @ Evaluation of the critical temperature in the
fi(oi) = exp(hio;), oja=0ig=0; Yo,B3 i constant exchange, zero field Ising model
A 0, otherwise; @ Leading 1/N corrections to the Free Energy of the

Viana-Bray model in the vicinity of the critical

fo (T = (Tair Taj)) = &P (Jjoaiva;) point (glass transition)
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@ BP is better then just a heuristic in the loopy case ... BP is the
special Gauge condition eliminating all contributions but loops.
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Conclusions

@ BP is better then just a heuristic in the loopy case ... BP is the
special Gauge condition eliminating all contributions but loops.

@ Exact Marginal probability allows explicit Loop Series expression in
terms of a solution of the Belief Propagation equations.

@ Truncation and/or Re-summation of the Loop Series provide
hierarchy of systematically improvable approximations/algorithms.
Standard BP/LP is a first member in the hierarchy.

@ Local example (truncation). Finding a critical loop, or a small
number of critical loops, can be algorithmically sufficient for drastic
improvement of BP decoding in the error-floor domain.

@ Multi-scale example of stat-mech problems with long correlations.
Re-summation is needed to improve upon BP.
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Future Challenges

@ Better Algorithms: Loop Series Truncation/Resummation

@ Generalizations. g-ary and continuous alphabets. Quantum spins, Quantum
error-correction.

@ Loop calculus based analysis of graph ensembles, e.g. understanding and
improving the cavity method [Mézard, Parisi '85-'03]

@ Extending the list of Loop Calculus Applications, e.g. SAT and cryptography
@ Non-BP gauges, e.g. for stat problems on regular and irregular lattices

@ Relation to graph (-functions [Koetter, Li, Vontobel, Walker '05]

@ Improving BP [Survey Propagation = Mézard et.al '02; Generalized BP =
Yedidia et.al '01]

@ Correcting for Loops in BP [Montanarri, Rizzo '05; Parisi, Slanina '05]
@ Accelerating convergence of bare BP-LDPC [Stepanov, Chertkov '06]

@ Reducing LP-LDPC complexity [Taghavi, Siegel '06; Vontobel, Koetter '06;
Chertkov, Stepanov '07]

@ Improving LP-LDPC [Dimakis, Wainwright '06]
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BP is Exact on a Tree (LDPC)
Pseudo-Codewords & Loops

200=5 51T o) e (£ )

o a=1 iI€Ea

h; is a log-likelihood at a bit (outcome of the channel)

ZE(h) = = (H - 1) exp (; h;ai)

o> (3> ieB

jep 1 iep i€p
L — —
Zjo = exp(£h)) H 5 H(Z;E +Zjg) £ H(Z;}; —Zi)
pta © \i#i i
1 Z+ JjeB i€p
_ o -1
o 5 In <ZJ> y  Mja=hj + Z tanh Htanh nig
jor pra i#i
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BP is Exact on a Tree (LDPC)

Pseudo-Codewords & Loops
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